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Building quantitative,
three-dimensional atlases of gene
expression and morphology at
cellular resolution
David W. Knowles1∗ and Mark D. Biggin2

Animals comprise dynamic three-dimensional arrays of cells that express
gene products in intricate spatial and temporal patterns that determine
cellular differentiation and morphogenesis. A rigorous understanding of these
developmental processes requires automated methods that quantitatively record
and analyze complex morphologies and their associated patterns of gene
expression at cellular resolution. Here we summarize light microscopy-based
approaches to establish permanent, quantitative datasets—atlases—that record
this information. We focus on experiments that capture data for whole embryos or
large areas of tissue in three dimensions, often at multiple time points. We compare
and contrast the advantages and limitations of different methods and highlight
some of the discoveries made. We emphasize the need for interdisciplinary
collaborations and integrated experimental pipelines that link sample preparation,
image acquisition, image analysis, database design, visualization, and quantitative
analysis. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Although quantitative measurements of morphol-
ogy and gene expression have long been a

component of developmental research,1,2 qualitative
descriptions have predominated, especially in molecu-
lar studies. Qualitative statements describe in a yes/no
manner for example, which tissues a gene is expressed
in or if two groups of cells move relative to one
another. This basic information is insufficient, though,
to address many fundamental questions in develop-
mental biology.

Advances in labeling, imaging, and computa-
tional image analysis, especially over the last 12 years,
are allowing quantitative measurements to be made
more readily and in much greater detail than in the
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past in a range of organisms including Arabidop-
sis, Ciona, Drosophila, C. elegans, mice, Platynereis,
and zebra fish.3–16 For example, a cellular resolu-
tion, three-dimensional atlas has been constructed
that records cell type, time of developmental origin,
and connections for each of tens and thousands of
neurons8 (Figure 1a). The movements of thousands of
cells have been tracked in real time relative to one
another3–7 (Figure 1b). Quantitative maps of gene
expression in each cell of an embryo have been
produced9–13 (Figure 1c). Changes in the shapes of
cells over time have been measured.14,15

These large-scale quantitative data provide
new insights that could not have been gained
through qualitative analyses. For instance, sets of
individual neurons that form local processing units
were discovered that form a basic substructure of
the brain8; a subset of gastrulation movements in
Drosophila were shown not to require fibroblast
growth factor (FGF), whereas previous qualitative
analyses had suggested that FGF was an essential
signal3; and regulators of dorsal/ventral cell fates
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were found to weakly affect the expression of
anterior/posterior regulators in Drosophila, which
previous nonquantitative studies had failed to
detect.19

Just as comprehensive datasets of genomic
sequence have revolutionalized biological discovery,
large-scale quantitative measurements of gene expres-
sion and morphology will certainly be of great assis-
tance in enabling computational embryology in the
future. Such datasets will form the essential basis
for systems level, computational models of molecu-
lar pathways and how gene expression concentrations
and interactions alter to drive changes in cell shape,
movement, connection, and differentiation. In this
review, we discuss the strategies and methods used to
generate such datasets.

The initial inputs for deriving quantitative
information of gene expression and embryonic
morphology are raw image data, either of fluorescent
proteins expressed in live embryos or of stained
fluorescent markers in fixed material. These raw
images are then analyzed by computational algorithms
that extract features, such as cell location, cell shape,
and gene product concentration. Ideally, the extracted
features are then recorded in a searchable database, an
atlas, that researchers from many groups can access.
Building a database with quantitative graphical and
visualization tools has the advantage of allowing
developmental biologists who lack specialized skills
in imaging and image analysis to use their knowledge
to interrogate and explore the information it contains.

We focus on approaches that capture infor-
mation with cellular resolution in three dimensions
because the cell is the basic building block for
all animals and morphology is almost invariably
three dimensional. Lower resolution studies or two-
dimensional image analyses have proven useful for
addressing some important questions,20–28 but space
does not permit discussion of these approaches here.

Creating Three-Dimensional Atlases:
Overview
Creating an atlas is more encompassing than
image acquisition and analysis. It requires a
clear understanding of the biological questions to
be addressed. Then appropriate labeling, sample

FIGURE 2 | A pipeline for building and using a three-dimensional
atlas.

preparation, imaging, image analysis, visualization,
and data management methods must be selected
(Figure 2). An interdisciplinary team is required that
collectively possess the needed expertise. Generating
useful atlases is still in its infancy. Which methods to
use at each step along the pipeline will depend greatly
on what analysis is required. There is currently no
‘magic toolbox’ that scientists can use to apply to
their specific task. Each step has to be tailored to suit
the experiment.

Imaging three-dimensional specimens is partic-
ularly challenging. Optical lenses with high magni-
fications and resolving powers produce high-quality
images from thin, two-dimensional samples. How-
ever, because of their short depth-of-fields such lenses
project blurry, mostly out-of-focus images from thick,
three-dimensional samples. Also, three-dimensional
samples like embryos, tissues, and other multicellular
systems are partially opaque. This limits the depth
into a three-dimensional sample that can be imaged.
These hurdles are continuously being addressed by

FIGURE 1 | Examples of three-dimensional atlases. (a) The FlyCircuit atlas of neuronal connectivity in Drosophila brains.8 Each color groups
members of a neuronal tract. Each panel displays different subsets of tracts. (b) Cell migration during gastrulation in Drosophila embryos.3 The two
left panels show cell movements over time. The two right panels show the net displacement vectors, with mesoderm cells shown in orange and
ectoderm cells show in gray. (c) Patterns of mRNA expression of transcription factors in Drosophila blastoderm embryos.10 The upper view shows a
three-dimensional representation of the embryo. The lower view shows a cylindrical projection in which height indicates the level of expression of
each transcription factor in each cell. Both views were generated using the visualization tool PointCloudXplore.17,18
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the development of new fluorescent probes, contrast
agents, and image acquisition and image analysis tech-
niques.

Three-dimensional atlas projects such as those
in Figure 1 generate large amounts of raw data,
involving many embryos or tissue samples. Assembly
of these data into an atlas, from which desired
biological information can be extracted, requires
a fully automated analysis pipeline. Fortunately,
advances in computer hardware, data storage, image
analysis, and computer vision have kept pace with
improvements in biolabeling and three-dimensional
bioimaging methods.

Labeling and Mounting
The first step in building an atlas is deciding, based
on the biological questions to be addressed, what
macromolecules need to be labeled in the system
being studied, and if live cell or fixed material should
be used. It is not practical to build a universal atlas
that contains all the information needed by a wide
range of developmental biologists. Instead, different
atlases will be required to address each question. It is
currently not possible to label a single embryo with
tens of probes for different biomarkers. Typically,
only two to four different labels can be efficiently
incorporated and distinguished in a single image,
certainly in high-throughput studies where sample
preparation must be robust. Consequently, atlases
require the amalgamation of data from many images.

If cell shape measurements are required, a
cell membrane stain would be useful.14 Nuclear
stains, such as DNA-binding dyes or a histone-Green
Fluorescent Protein fusion, are ideal for identifying
the locations of cells.19,29 If cell migration is to be
studied, a live cell approach is called for.3,11,14,29

If gene expression measurements must be made in
opaque tissue, then fixed material that has been
made translucent by soaking it in an optically clear
mountant is the practical approach.19 If the expression
levels of many mRNAs is to be measured, then it is
more practical to use nucleic acid in situ hybridization
to label fixed material19 than it is to fluorescently tag
mRNAs in live embryos, as the latter requires the
construction of complex transgenic lines.30

Where data for many specific biomolecules are to
be incorporated into the atlas, images from multiple
differently labeled embryos or tissue samples must
be registered into a common coordinate system.
This requires that in addition to each sample being
labeled for one of the specific biomolecules, they must
also bear a common reference label. The reference
could be a spatially patterned protein or mRNA.10

Alternatively, if the morphology and number of cells is

sufficiently constant between samples, as it is between
nematode embryos of the same developmental stage,
then a general stain for nuclei or other biomarker of
cell location can be used.29 In some cases, the overall
morphology of the sample has been used successfully
for registration.8 Since the reference label is to be used
throughout the atlas building project, particular care
should be taken in its selection.

For three-dimensional datasets, especially ones
that make quantitative measurements of gene
expression, the labels used are almost always
fluorescent. In live embryo experiments, transgenic
lines expressing fluorescent proteins with different
emission spectra are employed.31,32 Here the difficulty
of creating transgenic animals that target the specific
genes of interest is commonly the rate-limiting step.
With fixed material, a wider range of fluorophores
can be deployed, including DNA-binding dyes and
antibody conjugated Alexa dyes or quantum dots.19,33

When several different fluorescent probes are used to
stain the same sample, the emission spectrum of the
probes must be optimized to give the greatest spectral
separation. It should also be borne in mind that many
probes are bulky and can potentially interfere with
ligand–receptor interactions.

Proper mounting of labeled samples prior to
image acquisition is paramount. Proper mounting
maximizes the optical clarity of the sample, reduces
the damaging effects of free radicals and minimizes the
blurring created by optical aberrations. The overall
goal of mounting is to minimize changes in the
refractive index between the lens, the mountant, and
through the tissue sample. Fixed material can be
cleared, but care must be taken that the solvents used
do not disrupt the biology of interest, the fluorophores
or the morphology. Live biology has to be mounted so
that it can freely exchange oxygen and carbon dioxide
and has room to grow again so its morphology is not
disrupted.

Imaging in Three Dimensions
The next step is to select the appropriate imaging
method and the associated image acquisition
parameters. A number of technologies are available
for capturing three-dimensional images. These use
different ways to remove the out-of-focus information
that is collected when a three-dimensional image
is projected onto a two-dimensional image capture
device.34,35 Some basic measures can be used to
compare different imaging systems. Optical efficiency
is the ratio of the number of photons that are collected
to create the image to the number of photons used
to excite the fluorescence. High optical efficiency
lowers the amount of damaging excitation light
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required and increases the potential acquisition speed.
Signal-to-noise ratio is the fraction of image signal
intensity divided by the noise intensity. Image noise
results from ubiquitous fluorescence from the sample,
such as autofluorescence, and from random thermal
noise generated by the detector. It is important to
maintain the signal-to-noise ratio above a critical
minimum otherwise the image noise dominates,
making subsequent image analysis challenging. Signal-
to-noise is an important consideration when fast
acquisition speeds are required or when imaging low
numbers of fluorophores.

Choosing the imaging method depends on many
factors. For live cell experiments it is critical that
the total light exposure be kept to the minimum
because excited fluorescent molecules in the presence
of oxygen create charged free radicals that disrupt
biochemical pathways and cross-link macromolecular
cellular components. Speed of image acquisition is
also important in live cell imaging to properly capture
living dynamics. The choice of objective lens is
important. Objective lenses are defined by many
properties, but essentially by their magnification,
numerical aperture (NA), and working distance.
Magnification is the ratio of lengths in the image
to corresponding lengths in the sample. NA is a
measure of the ability of a lens to collect light. It
is defined by the largest angle that light emitted from
a point on the sample will be captured by the lens
and in practice by the refractive index of the fluid
that couples the objective to the sample. The NA of
objective lenses vary from low values between 0.3
and 0.5, through medium values between 0.5 and
1.0, to high values between 1.0 and 1.5. NA is a
measure of and increases with the resolving power
of the imaging system. In choosing the NA for the
objective lens, it should be borne in mind that its axial
(z-axis) resolving power will be generally less than its
lateral (x–y axis) resolving power. Working distance
is the distance between the front of the lens and the
point or plane in the sample being imaged. Working
distance is important in three-dimensional imaging
because it is the maximum depth into the sample
that can be imaged by that lens. Objective lenses
with low and medium NAs are usually air-coupled to
the sample, have low to medium magnifications, and
allow the greatest working distances. Objective lenses
with high NA have the shortest working distances and
are coupled to the sample with fluids that are more
dense than air, like water, glycerol, or oil. While these
criteria complicate image acquisition, high NA lenses
have the highest magnifications and resolving powers,
producing images of exceptional quality. Still, high
NA lenses may not be practical for some applications,

like imaging live embryo that have been mounted
in configurations requiring longer working distances.
Each imaging method has its strengths and weakness
and ultimately the choice depends on the scientific
question driving the atlas construction. Choosing the
imaging method that is most appropriate for a given
application requires an understanding of key technical
details.

Wilson-grating structured illumination micros-
copy36 capitalizes on the shallow depth-of-field of
objective lenses by using an opaque grating in the
illumination path. An image of the grating is projected
and illuminates part of the sample in a striped pattern.
Multiple images are acquired with the grating shifted
into different positions until the entire sample is
illuminated. The resulting images are combined in
such a way that the out-of-focus component, common
to them all, is removed. What remains is a single
optical slice of the sample at the focal plane of the
objective. Three-dimensional images are constructed
by repeatedly imaging the sample at different optical
planes along the optical axis. The technique is
moderately optically efficient in that a large percent of
fluorescently emitted photons are captured. In this
method high NA lenses give the thinnest optical
slices and thus the best axial resolution. It uses two-
dimensional image capture, so the image acquisition
is fast, and as a result this method is useful for
imaging live as well has fixed cell biology. More
recently, other forms of structured ‘standing-wave’
illumination have been used to double the resolving
power of wide-field fluorescence microscopy37 and
create super resolution optical microscopes, with
resolving powers an order of magnitude beyond the
theoretical diffraction limit.38–41 These will be ideally
suited for building atlases of subcellular structures
within single cells, rather than cellular resolution
atlases of entire embryos.

Deconvolution microscopy42 records a series of
images at different planes of focus through a biological
sample. Each image can be thought of as the sum of
an in-focus optical section and many out-of-focus
sections. With knowledge of the sample, which is
gained from the image, and the optical response
of the imaging system, termed the point spread
function, a three-dimensional in-focus image can be
reconstructed mathematically. Various computational
methods have been developed to remove the out-of-
focus components from the individual images, which
are then combined to create a single three-dimensional
image. This method is optically efficient because light
is not thrown away—it is deconvolved and reassigned.
The technique uses a two-dimensional image capture
device, so image acquisition is fast and thus well suited
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to live and fixed cell biology. Axial resolving power
is highest with high NA lenses. The technique works
well in fluorescence, but can also be applied to other
types of microscopy.

Confocal laser scanning microscopy uses
galvanometer mirrors to raster-scan a focused laser
beam across the sample.43 Because the beam
illuminates one point on the sample at a time, a
three-dimensional image is built sequentially, point by
point. However, although objective lenses focus a laser
to pinpoint accuracy in the focal plane at the sample,
the focused point is still too large along the optical-axis
and illuminates many out-of-focus planes. To remove
the light collected from the out-of-focus planes, the
image is filtered through a pinhole at the image
plane. This allows light to pass from the conjugate
sample point, blocking the light collected from the
out-of-focus planes. The method is optically inefficient
because most of the excited photons are excluded from
the image by the pinhole. Further, because the image
is collected one point at a time, the image acquisition
times are long, and this limits the usefulness of this
method for live cell imaging. Nevertheless, confocal
laser scanning microscopy has become very popular
because of its simplicity of implementation.

Spinning disk technology44 is an adaptation of
confocal laser scanning microscopy. A mechanical
circular array of pinholes, a Nipkow disk, allows
thousands of focused laser beams to scan the object at
the same time. In the implementation by Yokogawa
Electric Corporation, two disks are used—one an
array of microlenses which focus the laser beams onto
the sample and the other an array of pinholes that
confocalize the image. The advantage of this approach
is that it is fast, uses two-dimensional image capture,
and thus it has been widely used in live cell imaging.
However, it has low optical sensitivity because of the
use of pinholes and because of its rapid acquisition
speed; care must be taken that the signal-to-noise ratio
of the images is maintained.

Two-photon laser scanning microscopy is
another adaptation of laser scanning microscopy.45,46

Instead of exciting fluorescence by the absorption
of single photons at a fluorophore’s absorption
energy, fluorescence is excited by simultaneous
absorption of two half-energy photons. This nonlinear
absorption significantly reduces the volume within
the biological sample in which fluorescence occurs.
The density of photons is only high enough for
simultaneous absorption of photons within a tiny
volume of the focused laser beam. As a result, out-
of-focus planes are not fluorescently excited, and
this eliminates the need for a confocal pinhole.
Two-photon microscopy has higher optical efficiency

than confocal microscopy. In addition, because half-
energy photons have longer wavelengths, they scatter
less and penetrate further into biological samples.
Because fluorophores outside of the excitation volume
are not excited, phototoxicity and photobleaching
during scanning are also significantly reduced.

Light-sheet, selective plane microscopy,40,47

does away with the traditional Köhler light source
that illuminates the out-of-focus planes in the first
place. Rather than illuminating along the optical
axis, selective plane microscopy creates a transverse
sheet of light that excites a single optical plane
through the sample. No scanning in the X–Y direction
is involved, and the illuminated optical section is
imaged onto a two-dimensional capture device. In the
latest versions of selective plane microscopy, multiple
objective lenses can be used to image the sample from
different angles, and the sample stage is designed to
allow rotational symmetry about the light sheet.47–50

Depending on the orientation of the objective lenses,
the optical penetration through the sample can be
doubled (objectives at 180◦ orientation), or the
axial resolving power of one lens can be increased
by the second lens (objectives at 90◦ orientation).
Furthermore, by rotating the stage the sample can
be imaged at multiple orientations. Selective plane
microscopy is optically efficient, image acquisition
is fast and it allows both single-photon and two-
photon excitation.51 This techniques is versatile and
ideally suited to live cell dynamics. Some tricks are
needed to correct images for the transverse shadowing
effects created by illuminating with a light sheet. This
can be done computationally after the images are
acquired or by oscillating the angle of the light sheet.
Multiple lens imaging also requires post acquisition
analysis to construct the final image.52 Mounting the
biological samples is complicated by the rotational
symmetry required about the light sheet. Although
iSPIM53 uses a cleaver optical adaptation which
allows selective plane microscopy on a regular inverted
microscope. Longer working-distance objective lenses
with medium NA are needed, and this reduces the
resolving power of the imaging from what is possible.
Thus for example, the quality of images acquired from
live cell biology will never be as high as that possible
from fixed-cell methods which allow the sample to
be optically cleared and imaged with the highest
optical resolving powers currently possible (Figure 3,
compare panels a and b).

Segmentation, Feature Extraction, and
Registration
Once a set of high-quality images have been obtained,
the next step is to use these data to build a quantitative
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(a)

(b)

FIGURE 3 | Comparing image quality of SPIM and laser scanning multiphoton microscopy. Multiphoton optical sections are shown for stage-16
Drosophila embryos stained to label nuclei. (a) The top two images are of a live embryo expressing GFP-histone. The images were taken using the
two-photon SPIM technique of ‘simultaneous multiview imaging’ (SiMView) and were kindly provided by Philipp J. Keller.50 (b) The bottom two
images are of a fixed emrbyo stained with SYTOX Green and were acquired using standard two-photon laser scanning microscopy. The embryo’s
dorsal/ventral direction is shown from top to bottom in each image. Optical sections were selected through the midplane of each three-dimensional
embryo image to show, from left to right, its anterior/posterior (left) and it’s left/right (right) directions.

atlas. Three-dimensional atlas projects such as those
in Figure 1 generate large amounts of raw image data
that needs to be combined into a computationally
analyzable atlas. As we define it, an atlas is essentially
a large spread sheet, a table with rows and columns
of numbers and other descriptions. These may give
the x,y,z coordinates in space of cells at successive
time points, the concentrations and locations of gene
products in each cell, the histological cell type of each
cell, and/or the indices of neighboring or connecting
cells. Building an atlas from raw image data involves
broadly three types of image analysis: segmentation,
feature extraction and registration54–57 and these need
to be done in an automated way.

Segmentation
Segmentation is the subdivision of an image into
regions belonging to—and not belonging to—ob-
jects of interest, such as nuclei, cell membranes,
and tissues. Each voxel is assigned in a yes/no man-
ner into one of the categories being defined. Many
segmentation techniques are available and rely on
different properties of an image, such as bright-
ness, color, or texture. Examples of segmentation
techniques include Thresholding, Template Matching,
Watershed, Region Growing, Laplacian of Gaussian,
Difference of Gaussians, Level Set and Fast March-
ing methods.58,59 In the world of image analysis,
the problem of segmentation has been solved for
many applications. However, and particularly for
fluorescence-based bioimaging, the complexity of the

images means that existing methods do not work
‘out of the box’ and need specific tailoring for spe-
cific application. For example, total DNA-staining
combined with relatively simply segmentation algo-
rithms can be used to detect the position and number
of cells. However, more sophisticated segmentation
approaches will be needed to delineate cells if their
packing density is too high. If accurate determination
of cellular or subcellular volumes is required, then
segmentation techniques that detect edges as well as
blobs in an image may be needed in combination with
the staining of other cellular components.60 Often the
segmentation analysis may need to be supplied with
a priori information, such as the number, size, shape,
and packing density of the objects in the image to
be segmented. For multicellular systems, hierarchical
segmentation maybe required so that biological com-
ponents can be segmented on a subcellular, cellular,
tissue, and organ level.

The results of a segmentation analysis are labeled
segmentation masks that delineate individual objects
in the image. However, before these can be used
to direct subsequent quantitative evaluation, their
accuracy must be determined. The biggest difficulty
is to obtain an accurate ground truth to compare
the segmentation to. One approach is to compare the
results of segmentation to the raw image data using
a visualization tool.61 In high-throughput studies,
however, such labor intensive ‘by eye’ scoring can
only be performed on a small sample, usually only
small portions from a few images. Alternatively,
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automatic approaches can be devised. For example,
the correlation between the number of segmented
nuclei versus the overall volume of the embryo
measures the relative accuracy of different nuclear
segmentation methods, though this approach cannot
determine the absolute accuracy.10 Determining the
accuracy of large-scale segmentation analyses remains
a challenge for the field.

Feature Extraction
Once the accuracy of the segmentation has been
confirmed, the segmentation masks can be used to
direct quantitative evaluation of the features required
for the atlas. Many image features can be measured.
These are broadly divisible into hard-features, such
as positions, dimensions, rates of motion and the
brightness of cells, and soft-features, like the statistical
analysis of texture, pattern recognition, context
matching, clustering and classification.55,62–64

Registration
Image registration methods have been developed in
the field of vision research and applied to remote
sensing and medical imaging for years.65 Many
of these techniques are applicable to multicellular
biological systems. To create an atlas, information
from many images must be placed onto a common
morphological framework. This is essential because
biological samples, like embryos, are rarely identical.
Biological variability means that samples of the same
biological system may have different numbers of
cells or an equivalent number in different relative
positions, and this biological variability varies with
developmental time. Each image from a series of
different samples or from the same sample at different
times will have unique information, such as the
expression pattern of a gene or the neighborhood
connections between cells. Information from multiple
images must be combined in such a way that the
resulting comprehensive atlas accurately represents the
biology. To do this, registration methods first define
sets of biologically equivalent locations in each image:
for example, corresponding cells. There are many
ways of doing this that use the expression of specific
genes or the inherent morphological complexity
within the sample to define such equivalences.3,9–11,16

Registration is performed either on the raw image
data prior to segmentation or on sets of segmented
features. When raw image data are registered, a
single representative image can be chosen as the
reference coordinate system onto which other images
are mapped.8 When segmented features are registered,
a statistical average model can be created as the
reference coordinate system onto which extracted data

are placed.10 In either case, registration involves the
determination of sets of equivalences in space and time
that allow points or segmented objects in one image
to be registered with the equivalent points or objects
in another.

As with segmentation analysis, the accuracy of
the registration must be determined. For example,
coarsely registering multiple embryo images may
accurately align the principal body axes of a sample,
but it will blur information from non equivalent,
neighboring cells, due to the biological variability.
The only way to create atlases that correctly represent
the biology is to register images at cellular resolution.
In this way one will be able to demonstrate that
quantitative features derived from the atlas replicate
results derived from the analysis of multiple individual
embryos.10

Image Analysis Packages
To support automated high-throughput image-based
investigations of multicellular systems, many groups
are creating image analysis toolboxes specifically
for bioimaging informatics.66 These toolboxes bring
the latest developments in segmentation, feature
extraction, and registration to a broad audience
from fields that span biology to computer vision.
In doing so, these toolboxes are helping to form a new
community with multidisciplinary expertise.

Particularly useful are open source toolboxes
that are compatible with multiple operating systems.
The National Institutes of Health’s NIH Image
and ImageJ were some of the earliest open source
initiatives,67 and have more recently undergone a
further round of development with the introduction
of Fiji.68 ICY is another bioinformatics and image
analysis platform. It leverages the open-source
Visualization Toolkit (VTK, http://www.vtk.org).69

BioImageXD70 is yet another collaborative effort
providing image analysis, processing and visualizing
for multi-dimensional microscopy images. It is also
based on the Visualization Toolkit VTK, and the
National Library of Medicine’s Insight Segmentation
and Registration Toolkit (ITK, http://www.itk.org).
DIPimage (http://www.diplib.org) is a scientific image
processing and analysis toolbox written specifically for
MATLAB (http://www.mathworks.com). DIPimage
harnesses the power of MATLAB, while allowing
programmer flexibility in creating image analysis
pipelines. Other groups have created toolboxes for
specific application. For example, CellProfiler allows
quantitative evaluation for cultured cell phenotype.71

Considerable effort has also gone into development
of database and image analysis environments for
bioimage informatics. Examples of these are Bisque72
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and Open Microscopy Environment (OME) and more
recently OME Remote Objects (OMERO).73

Databases
Projects that produce large amounts of raw and
processed data require a database. Many atlases
are based on images from hundreds or thousands
of biological samples. For each image, sample
preparation and imaging involves multiple steps,
often with several associated variables such as the
biomolecule labeled, the developmental stage, image
quality, the date of experiment, and so forth. Thus, in
addition to data files, extensive metadata describing
the experiments associated with each file must also
be recorded in the database. This requires the
construction of a relational database to allow rapid
search and retrieval of files based on a variety of
criteria. In addition to allowing ready access to
data for subsequent analysis, such a database greatly
aids quality control during atlas construction. For
example, it allows a user to work backwards along
the pipeline to locate the cause of any data analysis
failures, determining what variables are associated
with a given failure or artifact. The database should
have an associated web site for access by internal
researchers working on atlas construction and quite
likely a separate Web site for public access to published
datasets. For examples, see:

http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp?
w=summary;

http://www.flycircuit.tw;

http://caltech.wormbase.org/virtualworm/.

Discovery Using Atlases
Once a searchable atlas has been constructed there
are fundamentally two approaches that can be used to
analyze the data: one visual, the other mathematical.
The challenge is that while biologists best understand
the questions that can be addressed using the atlas,
they may not always possess the computational and
mathematical skills needed to conduct sophisticated
analyses of such data files. For this reason, biologists
generally collaborate with computational scientists.
It is not always clear, though, what is the best way
to frame the analysis. Here, visualization tools can
provide important guidance. These tools provide a
point and click environment in which biologists can
explore various features of the data on their own,
for example looking for interesting correlations. This
exploration may itself lead to novel discoveries, but
will also help the biologist better understand the
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FIGURE 4 | Visualizing 3D gene expression by parallel coordinates.
Each vertical axis shows the mRNA expression levels for one gene in
each of the 6000 cells in the Drosophila blastoderm embryo. The lines
connect data for the same cells. Blue lines connect cells expressing the
anterior most stripe of hunchback (hb), yellow lines the central hb
stripe, and pink lines the posterior stripe. The locations of these cells are
shown in the physical three-dimensional view below. In the parallel
coordinates, it can be readily seen that the anterior stripe on hb
coincides with high slp1 expression, the central hb stripe with high ftz
expression, and 50% of the posterior hb stripe with high eve expression.
These views were generated using PointCloudXplore, an interactive
visualization tool (http://bdtnp.lbl.gov/Fly-Net/bioimaging.jsp?
w=pcx).17

quality and nature of the dataset, improving his
or her ability to suggest analyses to computational
colleagues. The results of the subsequent mathematical
analysis can often be exported as additional rows and
columns into an updated version of the atlas and then
explored by the biologist using the visualization tool.

Visualization Tools
Developing visualization tools for an atlas of
three-dimensional morphology and expression is
challenging.61,74–76 The complexity of the data quickly
become uninterpretable to the human eye. Many
thousands of cells are layered on top of one another,
each with multiple quantitative attributes assigned to
them. The challenge is to find ways to view only
defined parts of the data to reduce the complexity
and thus allow visualization of, say, correlations
between one attribute and another. It is important
that the tool allow the user flexibility in choosing
which attributes to compare, ideally with different
graphing and display options.

Figure 1 provides some examples. In panel a,
defined subsets of neurons belonging to specific tracts
are displayed in each panel. In panel b, two ways
to visualize how cells move during gastrulation are
shown, one showing continuous change over time,
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the other showing mean vectors over a defined time
interval. In panel c, the differences in mRNA expres-
sion between cells are shown in two views, a physical
three-dimensional view (upper) and a cylindrical pro-
jection (lower) in which height is used to better
illustrate differences in expression levels. Visualization
tools, however, can go beyond these relatively straight-
forward ways of displaying data. For example, only a
relatively few gene expression patterns can be visual-
ized at once in a physical view such as that in Figure 1c.
The expression of tens of genes can be compared at
once, however, only if the levels of expressions each
gene in all cells is represented along one of a series
of one dimensional, parallel coordinates17 (Figure 4).
At the same time, results for a subset of genes can be
projected back into a three-dimensional physical view,
once they are identified as being of interest (Figure 4).

Mathematical Analysis
Ultimately, the most powerful way to analyze a three-
dimensional atlas is by sophisticated mathematical
approaches. Only in this way can the combination of
multiple quantitative features within the data be rigor-
ously compared. A wide array of analyses have been
made using three-dimensional atlases. For instance,

a model of mesodermal cell movement during gas-
trulation showed, among other things, that neither
ectodermal cell movements or the orientations of cell
divisions correlate with the direction of mesoderm cell
movement.3 An analysis of the correlation between the
relative concentrations of transcription factor protein
molecules and temporal changes in target gene mRNA
expression established putative regulatory relation-
ships within a transcription network.77 Quantification
of changes in plant stem cell volumes and divisions
showed that both play key roles in shaping specific
morphologies.14 Quantifying interspecies divergence
showed that even small changes in regulatory net-
works result in significant differences in the placement
and number of equivalent cells.78

There is every reason to believe that in future a
wider array of developmental processes will be stud-
ied by mathematical analysis of three-dimensional
atlases—created using optical imaging and image
analysis techniques. As other data classes—such as
molecular interaction data—are folded in, more com-
plex systems models can be expected that seek to
link the biochemistry of regulatory networks to mor-
phological dynamics. The creation and exploitation
of large-scale quantitative atlases will lead to a more
precise understanding of development.
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